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Abstract—(+)-Biotin was synthesized in 11 steps and in 25% overall yield from readily accessible L-cysteine through a Lewis
base-catalyzed highly diastereoselective cyanosilylation of (2R,4R)-N-Boc-2-phenylthiazolidine-4-carbaldehyde 2 and a ring
closure of a cis-allylic carbonate 5b utilizing a palladium-catalyzed intramolecular allylic amination. © 2002 Published by Elsevier
Science Ltd.

(+)-Biotin (1) has received considerable attention due to
the significant biological properties for human nutrition
and animal health.1 The industrial production of 1 (ca.
40 t/year) has been relying on a total synthetic method
due to the lack of an efficient fermentation method.2

Since the first total synthesis of (+)-biotin was accom-
plished about 50 years ago,3,4 a number of synthetic
routes have been devised.2 Among them, synthesis uti-
lizing L-cysteine as a starting material5 is one of the
steadiest approaches to 1 because of its inherent struc-
tural features having required heteroatoms (nitrogen
and sulfur atoms) and a stereogenic center correspond-
ing to the (+)-biotin ring skeleton. However, there are
few approaches based on this strategy that overcome
such drawbacks as need for multi-steps, expensive or
hazardous reagents and quite low temperature.6 A more
efficient synthetic method utilizing the L-cysteine skele-
ton is thus still in much demand. We report herein a
practical synthesis of 1 from L-cysteine based on a
novel strategy involving a highly diastereoselective
cyanosilylation and a palladium-catalyzed intramolecu-
lar allylic amination.

In retrosynthetic analysis (Scheme 1), an intramolecular
allylic amination of a carbonate 5 would set the stage
for the final cyclization required in the preparation of
the cis-fused bicyclic ring skeleton of 1. Since the
palladium-catalyzed allylation takes place with reten-
tion of the configuration,7 a cis isomer 5 is expected to
be required for the ring closure. Compound 5 may be
derived from a ketoacid 4 through esterification, O-
methoxycarbonylation, removal of the Boc and the

Scheme 1.
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benzylidene groups, dehydrative cyclization and a ure-
ido formation. The carboxybutyl chain of 1 was envis-
aged to arise from the reaction of an O-TMS-cyano-
hydrin 3 with a di-Grignard reagent prepared from
1,4-dibromobutane followed by reacting with carbon
dioxide. An anti-selective cyanosilylation of an �-amino
aldehyde 2 is required to ensure the cis configuration of
5.

Compound 2 was prepared from L-cysteine in four
steps and in 80% yield by modification of the reported
procedure,5c,8 employing sulfur trioxide pyridine as an
alternative oxidant.9

The synthesis of the anti-O-TMS-cyanohydrin 3 was
initially tested in the presence of a Lewis acid. How-
ever, all attempts using popular Lewis acids such as
zinc iodide failed accompanied by a considerable
decomposition of the reactant 2 and/or the product 3.
Mukaiyama and co-workers have reported a high-yield-
ing Lewis base-catalyzed cyanosilylation of aldehydes.10

We applied the procedure to the cyanosilylation of 2
(Table 1).11 Upon treatment of 2 with trimethylsilyl
cyanide (TMSCN) (1.1 equiv.) in the presence of Et3N
(10 mol%) at −10°C in CH2Cl2, the reaction rapidly
took place to afford the desired O-TMS-cyanohydrin 3
in 96% yield albeit in a poor selectivity (anti/syn=
72:28) (Table 1, entry 1). Since a hypervalent silicate
formed from TMSCN and Et3N has been assumed to
be an active species in the cyanosilylation and the
stereochemical outcome might be accounted for by the
Felkin–Ahn model, a more sterically demanding Lewis
base should improve the diastereoselectivity. As
expected, when i-Pr2NEt in place of Et3N was
employed as the Lewis base, the diastereoselectivity was
remarkably elevated (anti/syn=89:11, 97%) (Table 1,
entry 2). Further screening of the bulky Lewis bases
resulted in a finding that tri-n-butylphosphine can effect
the cyanosilylation with an excellent diastereoselectivity
and in high yield (anti/syn=92:8, 96%) (Table 1, entry
5). To the best of our knowledge, this represents the
first example of a Lewis base-catalyzed highly
diastereoselective cyanosilylation.12

The carboxybutyl chain of 1 was installed by the reac-
tion of the in situ generated O-TMS-cyanohydrin 3
with di-Grignard reagent5a,13 derived from 1,4-dibro-
mobutane and subsequent treatment with carbon diox-
ide (Scheme 2). While the yield was poor in THF
(20%), the use of ether considerably improved the reac-
tion to give a ketoacid 414 in 61% yield based on 2.
Much safer solvent system of n-butyl ether and toluene
(1:2) was found to give 4 in 79% yield.

The ketoacid 4 was esterified and purified by crystal-
lization to give enantiomerically and diastereomerically
pure ketoester 715 in 73% yield. The hydroxyl group of
7 was then protected as a methyl carbonate, which, in a
later step, functioned as an activating group for the ring
closure. Treatment of 8 with acetyl chloride in the
presence of methanol effected the successive transfor-

Scheme 2. (a) (i) TMSCN, n-Bu3P, −10°C, CH2Cl2, (ii)
BrMg(CH2)4MgBr, n-Bu2O, toluene, −3 to −25°C, (iii) CO2,
(iv) aq. citric acid, 79%; (b) Me2SO4, K2CO3, 25°C, DMF,
73%; (c) ClCO2Me, Et3N, DMAP, 0°C, THF, quant.; (d) for
5a: (i) AcCl, MeOH, toluene, 0°C, (ii) KOCN, H2O, 25°C,
86%; for 5b: (i) AcCl, MeOH, toluene 0°C, (ii) PhCHO,
NaBH3CN, THF, H2O, 5°C, (iii) KOCN, H2O, 25°C, 82%;
(e) for 6a: Pd(OAc)2, NaHCO3, P(OEt)3, THF, H2O, 38°C,
30%; for 6b: Pd(OAc)2, NaHCO3, P(OEt)3, DMF, n-Bu4NCl,
100°C, 77%; (f) H2, Pd(OH)2/C, 25°C, AcOEt; (g) aq. HBr,
reflux, 85% (two steps).

Table 1. A Lewis base-catalyzed cyanosilylation of 2a

Additive T (°C) t (h)Entry anti/synb Yield (%)b

Et3N −101 0.5 72:28 96
2 0.5−10 97i-Pr2NEt 89:11

n-Bu3N3 −10 0.5 77:23 92
4 t-Bu3P 25 19 88:12 84
5 n-Bu3P −10 0.5 92:8 96

a The reactions were conducted on 1 mmol scale.
b Determined by HPLC analysis of the crude reaction mixture after desilylation with aqueous citric acid.
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mations involving removal of the Boc and benzylidene
groups, cyclization to the tetrahydrothiophene ring and
dehydration. The resulting crude amine hydrochloride
was treated with potassium cyanate to furnish a cis-
allylic carbonate 5a in 86% yield based on 8.

With the cis-allylic carbonate 5a in hand, we attempted
the palladium-catalyzed ring closure of 5a. Treatment
of 5a with Pd(OAc)2 in the presence of P(OEt)3 and
NaHCO3 in aqueous THF16 afforded the desired
cyclized product 6a albeit in a poor yield (30%). As De
Clercq and co-workers have pointed out an importance
of an N-benzyl group for the thermal cyclization of an
ene carbamoyl azide at C-3 and C-3a position of the
(+)-biotin ring skeleton,5c an N-benzyl derivative 5b
was tested in place of 5a. The compound 5b17 was
readily prepared from 8 in 82% yield by a slight modifi-
cation of the reaction sequence involving a reductive
alkylation with benzaldehyde. The compound 5b was
subjected to the same reaction conditions as those for
the cyclization of 5a, expectedly affording 6b in good
yield (60%). The structure of 6b was assigned by com-
parison of the IR, 1H NMR and MS spectra with those
described in the literature.5c The reaction under solid–
liquid phase transfer conditions using a catalytic
amount of tetrabutylammonium chloride in DMF18

was found to be extremely effective to provide 6b in a
much improved yield (77%). Following the reported
procedure,5c the compound 6b was converted to (+)-
biotin (1) in 85% yield through hydrogenation and
subsequent deprotection with aqueous HBr.19

In conclusion, (+)-biotin was synthesized in 11 steps
and in 25% overall yield from readily accessible L-cys-
teine. The high overall yield, short steps, simple opera-
tion and use of readily accessible reagents would permit
not only the practical large-scale preparation of (+)-
biotin but also the synthesis of (+)-biotin derivatives
having promising biological properties.
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